Schottenbauer Publishing

Showing posts with label skater. Show all posts
Showing posts with label skater. Show all posts

Thursday, April 14, 2016

Lessons on Friction & Collisions

Friction and collisions are concepts relevant to both ice hockey and figure skating. Consider the graph below, excerpted from a book by Schottenbauer Publishing:


Discussion Questions
  1. How is air hockey similar to ice hockey? How is it different?
  2. How is air hockey similar to ice skating? How is it different?
  3. What happens when a hockey puck collides with a stick? 
  4. How are the phenomena in this graph similar to collisions between an ice hockey puck and stick? How are they different?
  5. What is the role of friction in ice skating? What does friction do to the motion of a hockey puck or a skater? 
  6. How does this graph demonstrate friction?
  7. How are the phenomena in this graph similar to friction experienced by an ice hockey puck? How are they different?
  8. How are the phenomena in this graph similar to friction experienced by an ice skater? How are they different?

Additional sample graphs are available in a free pamphlet from the publisher's webpage.

Additional Information

Monday, November 3, 2014

Skater in Motion: x-y Plots of Movement

In elementary school, math students learn the graph-reading skills. How often do these same students enjoy applying math to real-life data? In books from Schottenbauer Publishing, students have the opportunity to decode graphs showing movement during popular sports.

The graph below (Copyright 2014, All Rights Reserved), excerpted from the book series Glide, Spin, & Jump: The Science of Ice Skating from Schottenbauer Publishing, shows an ice skater in forward motion.





Discussion Questions
  1. What is the range of each variable in each graph? Include x, y, and t as variables in your analysis.
  2. In this sample, which leg is used for pushing off? Which leg moves forward first? 
  3. Use the information from the graph to draw the body in physical space, at a minimum of 4 time points.
  4. Is the right knee ever in front of the right hip? Is the right ankle ever in front of the right knee or right hip? Describe the sequence of motion.
  5. Is the left knee ever in front of the left hip? Is the left ankle ever in front of the left knee or left hip? Describe the sequence of motion.

Additional free graphs are available in a free pamphlet from the publisher's webpage. 

The following books from Schottenbauer Publishing contain similar types of graphs and data pertaining to the science of ice skating, figure skating, and hockey:

Graphs & Data for Science Lab: Multi-Volume Series
  • The Science of Ice Skating 
    • Volume 1: Translational Motion
    • Volume 2: Rotational Motion (Curves)
    • Volume 3: Rotational Motion (Spins)
    • Volume 4: Jumps
    • Volume 5: Ice Hockey
    • Volume 6: Biophysics
    • Volume 7: Video Analysis
    • Volume 8: Reference Manual
  • The Science of Hockey
    • Volume 1: Force, Acceleration, & Video Analysis of Pucks & Balls
    • Volume 2: Force & Acceleration of Sticks, plus Biophysics
    • Volume 3: Video Analysis of Ice, Field, & Street Hockey Sticks
Anthologies of 28 Graphs
    • The Science of Figure Skating
    • The Science of Ice Hockey
    • The Science of Winter Olympic Sports

    In addition, the following books are suitable for younger children learning geometry:

    • The Geometry of Figure Skating
    • The Geometry of Winter Olympic Sports 

    Thursday, October 2, 2014

    Spinning on Ice

    Physics divides motion into two general types: translational (straight) motion and rotational (curved) motion. Whether it is a figure skater, hockey skater, or puck rotating on the ice, the same laws of physics apply. 

    The graph below (Copyright 2014, All Rights Reserved), excerpted from the book series Glide, Spin, & Jump: The Science of Ice Skating from Schottenbauer Publishing, shows a rod rotating around a central axis.




    Discussion Questions
    1. Describe the four variables contained in the graph. What is the range of each variable?
    2. How is position measured in the graph? What is the unit of measurement?
    3. How many times is force applied to the rod? 
    4. When force is applied, what happens to the rod?
    5. Why does the rod slow down, and motion stop?
    6. What is the definition of acceleration? 
    7. Why does acceleration change so much, when the velocity and position do not?


    Additional free graphs are available in a free pamphlet from the publisher's webpage. 

    The following books from Schottenbauer Publishing contain similar types of graphs and data pertaining to the science of ice skating, figure skating, and hockey:

    Graphs & Data for Science Lab: Multi-Volume Series
    • The Science of Ice Skating 
      • Volume 1: Translational Motion
      • Volume 2: Rotational Motion (Curves)
      • Volume 3: Rotational Motion (Spins)
      • Volume 4: Jumps
      • Volume 5: Ice Hockey
      • Volume 6: Biophysics
      • Volume 7: Video Analysis
      • Volume 8: Reference Manual
    • The Science of Hockey
      • Volume 1: Force, Acceleration, & Video Analysis of Pucks & Balls
      • Volume 2: Force & Acceleration of Sticks, plus Biophysics
      • Volume 3: Video Analysis of Ice, Field, & Street Hockey Sticks
    Anthologies of 28 Graphs
      • The Science of Figure Skating
      • The Science of Ice Hockey
      • The Science of Winter Olympic Sports